PVC is very easy to recycle mechanically (i.e. without destroying the polymer chains). Mechanical recycling is well suited when clean fractions are available in sufficient quantities on a regular basis. PVC can be recycled repeatedly (in laboratory tests more than 8 times); depending on the application, because recycling does not measurably decrease the chain length of its molecules. There are already several purpose-built operations in Western Europe, which recycle pipes, profiles, flooring, and membranes. The West European PVC industry has made clear public commitments to significantly increase mechanical recycling in these applications.
Large quantities of PVC pre-consumer (industrial waste) are being recycled: In 2004, 92 % of the about 760 kt of industrial waste generated in the EU-15 were recycled . Close to 100 kt of PVC post-consumer waste were recycled in 1999. The efforts of Vinyl 2010 are now adding 150 kt based on 2007 figures, and the intention is to grow this to in excess of an extra 200 kt a year by 2010.
The main difficulty for the recycling of post-consumer PVC is in collecting suitable waste at an acceptable cost. This difficulty does not affect PVC alone, but all plastics as well as many other materials.
Next to conventional mechanical recycling, a dissolution process (Vinyloop ®) has been developed to extract PVC from products such as cables, tarpaulins, etc. The recovered product is PVC compound that can be used without further processing and cleaning. The first commercial plant has started up in Italy early 2002. Another one was recently started up in Japan.
Feedstock recycling is an alternative to overcome the limitations of mechanical recycling. Its purpose is to recover a basic chemical element such as carbon and/or chlorine. Extensive trials have also demonstrated the suitability of two commercial plants in Germany to carry out PVC feedstock recycling. Other technologies for PVC feedstock recycling are being developed in Europe and Japan.